Networking Objectives Part 3

SMK N 1 GEMPOL : Networking Objectives Part 3
Layer 1

The Physical Layer is at the bottom. This includes the parts of the network that you can see, such as cables, patch panels, jacks, and optical fibers. Specifications for the Physical Layer have to do with the differences between categories of cables, the wavelength properties of optical fibers, the length restrictions, and electrical specifications. This is extremely important stuff, but most network designers only think about it briefly when they do the cable plant. Other physical-layer issues, such as laser intensity, wavelength characteristics, attenuation, and so on, are important to engineers who design the equipment and cables. But for the network design they appear only in decisions to match the specifications of different pieces of hardware and cabling.

Layer 2
The Data Link Layer is where things start to get a bit more abstract, so some examples might help. This layer is where the difference between Ethernet, Fast Ethernet, and Token Ring exists. It includes all of the specifications about how to build a packet. It describes how the different nodes on this network avoid contention using collisions or token passing or perhaps some other algorithm. For broadcast media (as opposed to point-to-point media where you know that if you send out a packet, it can only be received by one other device), it defines how to actually specify for which device or devices the packet is destined.
Before going on, let me point out the ways that these first two layers are both connected and separable. For example, you have a certain physical layer, such as Category 5 twisted pair cabling. Then, when you decide to run Ethernet over this physical medium, you are constrained to use a particular type of signaling that works with this medium. It is called 10BaseT. There are other types of Ethernet signaling, such as 10Base2. In this case, though, you would have to use coaxial cable designed to have 50 Ω (ohm) characteristic impedance. But, over this twisted pair cabling, you could just as easily run Token Ring. Or, if you are working with Token Ring, you could choose instead to use Type 3 shielded cabling.
The point is that Ethernet means a particular way of forming packets and a particular way of avoiding contention (collisions). It can run over many different types of physical media. Going up the protocol stack, the same is true at each layer. You can run TCP/IP over Ethernet, or over Token Ring, ATM, or FDDI, or over point-topoint circuits of various descriptions. At each layer there is a set of specifications on how to get to the layer below. You can think of this specification as being the line between the layers of the stack. So the line between the Physical Layer and the Data Link Layer includes 10BaseT, 100BaseFx, and so forth. Strictly speaking, these distinctions are described in sublayers of the standard OSI model. The IEEE provides detailed specifications of these protocols..

0 comments:

Post a Comment